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Master equation simulations of a model of a thermochemical system

Andrzej L. Kawczyński* and Bogdan Nowakowski
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

~Received 3 February 2003; published 26 September 2003!

Master equation approach is used to study the influence of fluctuations on the dynamics of a model ther-
mochemical system. For appropriate values of parameters, the deterministic description of the system gives the
subcritical or supercritical Hopf bifurcations. For small systems~containing 100 000 particles! close to the
supercritical Hopf bifurcation, the stochastic trajectories obtained from numerical simulations do not allow to
distinguish between damped oscillations around a stable focus and sustained oscillations around a small stable
limit cycle. This uncertainty disappears if the number of particles in the system is increased~up to 1 000 000!.
Close to subcritical Hopf bifurcation the stochastic trajectory of the system jumps from the basin of attraction
of a stable focus to the basin of attraction of a stable limit cycle. In this case the time dependencies of
temperature and concentration of reactant in the system are apparently similar to intermittent chaotic oscilla-
tions. The mean first passage time for the transitions from the stable focus to the stable limit cycle show the
characteristic exponential dependence on the number of particles. This passage time depends very strongly on
the bifurcation parameter~reaction heat!, which determines the distance between the stable focus and an
unstable limit cycle.

DOI: 10.1103/PhysRevE.68.036218 PACS number~s!: 82.40.Bj, 82.20.Wt
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I. INTRODUCTION

Nonlinear dynamical systems often exhibit enhanced s
sitivity to fluctuations@1–4#. The stochastic deviations from
deterministic dynamics can be particularly significant in s
tems close to bifurcations, where fluctuations may indu
effects that reach the macroscopic level. Bifurcations
turning points at which qualitative changes of features
deterministic dynamics develop. Since a stochastic evolu
is to some extent indeterministic, it can be expected that
vicinity of bifurcation has a particular effect on stochas
dynamics.

Very rich nonlinear behavior such as excitability, bistab
ity, and limit cycle oscillations can be observed in therm
chemical systems@5–7#. In this paper we study stochast
effects in a thermochemical system close to the supercri
and subcritical Hopf bifurcations, related to different sc
narios of the emergence of limit cycles. Deterministic d
namics of this system is based on two simple reactions o
but nevertheless, it exhibits all kinds of nonlinear behav
mentioned above. The chemical model we study consist
two elementary reactions: one catalytic~but not autocata-
lytic! bimolecular reaction and one monomolecular reacti
More variables are necessary to obtain such rich behavio
isothermal chemical systems consisting of mono and bim
lecular reactions only@8–11#. The simplicity of the model
makes feasible in future microscopic simulations for valu
of parameters close to the Hopf bifurcations, which could
compared with the mezoscopic approach we apply in
present paper. Small scale microscopic simulations of
system far from bifurcations have been performed previou
@12–14#.

In studies of stochastic properties, especially efficien
the master equation formalism@1,4,15#. Its advantage is tha
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it enables the basic description of fluctuations without go
into the complexity of underlying microscopic dynamic
The master equation is directly developed from the kine
theory of gases and it is appropriate to describe internal fl
tuations. The other method, the Langevin approach, is u
ally applied to study the influence of an external noise. T
master equation method has been well developed and wi
applied to reaction and diffusion processes in isothermal s
tems@4#. However, this mesoscopic approach was much l
advanced for thermal processes, in which temperature is
a discrete but a continuous variable. Recently, the ma
equation has been derived for the Semenov thermochem
system, which includes energy exchange with a thermo
@16,17#. The results of this mesoscopic approach have b
confirmed by microscopic simulations. Following this r
cently developed method, in the present paper we apply
master equation to study fluctuations in the catalytic therm
chemical system in the vicinity of the Hopf bifurcations.

In the following section we present the model of the th
mochemical system as well as its deterministic descripti
Section III contains necessary details of the bifurcat
analysis of deterministic equations, which allow to disti
guish between the supercritical Hopf bifurcation and the s
critical one. In Sec. IV the master equation corresponding
the studied system is presented. The following section c
tains the results of stochastic simulations and their comp
sons with the deterministic description. In the last section
discuss and explain the obtained results.

II. MODEL

We consider a well-mixed, nonadiabatic thermochemi
system which exchanges energy with its surroundin
Boundaries of the system are kept at constant tempera
Tb . The system is composed of the reactantA, the productB,
and the catalystC. We assume that the following reaction
occur in the system:
©2003 The American Physical Society18-1
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A1C →
k1

B1C1energy, ~1!

B →
k2

A. ~2!

The first reaction is the exothermic one with a reaction h
Q. The second reaction occurs on the walls of the system
imitates an unspecified mechanism allowing for the sup
of the reactantA and the removal of the productB. We as-
sume that no heat effect is associated with reaction~2!. It is
noteworthy that the energetic balance of the two reaction
positive. This is possible because the system is open.
system considered here is a modification of the model ela
rated by Vol’ter and Sal’nikov@5#. It has also been used i
the previous papers on thermochemical systems@12–14#.

Let us notice that the sum of the concentrations ofA and
B does not change in time and the concentration of the c
lyst C is constant. Therefore, the composition of the syst
is uniquely determined by the concentration ofA. Exchange
of energy between the system and an environment oc
due to a heat flow through the boundaries. We consider
diluted gas system for which the internal energyU is related
to the temperatureT by the equationU5(3/2)NkBT, where
N is the number of particles andkB is the Boltzmann con-
stant. The environment temperature is assumed constan
the heat transfer may be described by the Newton’s l
Phenomenological behavior of the system is described by
balance equations for the number density ofA and the tem-
perature:

V
dnA

dt
52k1nAnCV1k2nBS, ~3!

3

2
NkB

dT

dt
5k1nAnCVQ2knSkB~T2Tb!, ~4!

whereV is the volume of the system,S is the surface of the
system,n is the total number density,nA , nB , andnC are the
number densities ofA, B, andC, respectively,k is the coef-
ficient of heat exchange, andTb is the a temperature of th
boundary of the system. Due to the relationn5(nA1nB
1nC), the density ofB can be eliminated from Eq.~3!.

From the kinetic theory of gases it follows that the ra
constants and the coefficient of heat exchange depend o
temperature of the system and can be presented in the
lowing form:

k15k1
0S T

Tb
D 1/2

expS 2
EA

kBTD , ~5!

k25kpB , ~6!

k5k0S T

Tb
D 1/2

, ~7!

where pB is the coefficient determining the probability o
reaction~2! on the walls.

In further discussion it will be useful to introduce th
dimensionless variablesa5nA /n and h5nC /n, which are
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molar fractions ofA andC, respectively,u5T/Tb is the di-
mensionless temperature andt85nk1

0t is the dimensionless
time. The balance equations~3! and ~4! have then the form

da

dt8
5Au@2ah exp~2«/u!1c2~12a2h!#5 f ~u,a!,

~8!

du

dt8
5

2

3
Auq@ah exp~2«/u!2c1~u21!#5g~u,a!, ~9!

where «5EA /kBT, q5Q/kBTb , c15k0S/qk1
0N, and c2

5pBk0S/k1
0N are dimensionless parameters.

The nullclines of the system have the form

aA5
c2~12h!

he2«/u1c2

, ~10!

aT5
c1e«/u

h
~u21!, ~11!

where aA and aT are the solutions tof (u,a)50 and
g(u,a)50, respectively. In further discussion it will be con
venient to use the combination of both the nullclines giv
by

aA1T5~12h!1
c1

c2
2

c1

c2
u. ~12!

The nullcline for a is a monotonic function ofu and
therefore, it is attracting for all initial conditions. Thus, th
necessary condition for the appearance of oscillations in
system is that the nullcline foru must be nonmonotonic an
have a branch which is repelling. It is easy to check that
necessary and sufficient condition for the nonmonotonic
pendence~the existence of two extremes! of the nullcline on
u is «.4.

In general, the nullclines may have one or three inters
tion points~stationary states!. In the present paper we discus
only the case with one stationary state positioned on
repelling branch ofaT , because we limit ourselves to stud
the supercritical and subcritical Hopf bifurcations. The ma
mal negative slope of the nullcline foru at the repelling
branch is given by

d~aT!

du U
u3

52
c1

h«
e«22~«24!, ~13!

whereu3 denotes a value ofu at whichd2aT /du2 is equal to
zero. This slope must be greater than the slope of the stra
line aA1T given by

d~aA1T!

du
52

c1

c2
. ~14!
8-2
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MASTER EQUATION SIMULATIONS OF A MODEL OF . . . PHYSICAL REVIEW E 68, 036218 ~2003!
Therefore, to exclude the existence of three stationary sta
it is necessary and sufficient thatc2<«h/(«24)e(«22). Fig-
ure 1 shows the nullclines fora and u given by Eqs.~10!
and ~11!.

Unfortunately, the coordinates of a stationary statea` and
u` cannot be found analytically. It is easy to check that
trajectories of the system starting from the boundary of
rectangle (0,0),(0,12h),(u l ,12h),(u l ,0) flow into the rect-
angle, ifu l is sufficiently large. Therefore, an attractor mu
exist inside the rectangle. If the stationary state is unsta
then the attractor must be a stable limit cycle.

Let us mention that for fixed values of the parameters«,
h, c1, andc2 the nullclines do not change their position o
the phase plane. The stability of the stationary state depe
then only on the reaction heatq, which we will use as the
bifurcation parameter. In the sequel we choose two set
values ofc1 andc2, for which the supercritical and subcrit
cal Hopf bifurcations occur, respectively.

III. BIFURCATION ANALYSIS

The stationary state of system~8! and~9! may be a stable
or unstable node, or a stable or unstable focus. Its chara
is determined by the linear terms in the expansion off (u,a)
andg(u,a) in the Taylor series arounda` andu` :

dx

dt8
5ax1by1a20x

21a11xy1a02y
21a30x

31a21x
2y

1a12xy21a03y
31••• ~15!

and

FIG. 1. The nullclines of the system fora andu on the phase
plane for the following values of the parameters:«55.0, h
50.04, c150.0018, andc250.0036. The supercritical Hopf bifur
cation occurs atqcr521.968. The dashed closed curves show
small stable limit cycle atq522.5 inside the big one atq525.0.
03621
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dy

dt8
5cx1dy1b20x

21b11xy1b02y
21b30x

31b21x
2y

1b12xy21b03y
31•••, ~16!

wherex5a2a` andy5u2u` .
If ( a1d)22bc.0, then the stationary state is a nod

otherwise it is a focus. The stationary state is stable provi
(a1d),0 or unstable if (a1d).0. At (a1d)50 it
changes its stability. The stable focus can lose its stabilit
a critical value of a bifurcation parameter by the supercriti
Hopf bifurcation SF→UF1SLC. In this case the stable fo
cus ~SF! at the critical value of the parameter becomes
center and then the unstable focus~UF!, from which the
stable limit cycle~SLC! arises. The radius of SLC is growin
from zero. The other possibility is that the unstable lim
~ULC! cycle ~surrounding SF! decreases its radius approac
ing zero at the critical value of the parameter. Then the co
plex focus is formed and next SF becomes UF. This bifur
tion is possible, if before it the subcritical Hopf bifurcatio
SF→SF1ULC1SLC has appeared. In this case the sta
focus remains stable, but a pair of SLC and ULC appear
some distance from the stable focus. Monotonic change
the bifurcation parameter causes an increase of the radiu
SLC and a decrease of the radius of ULC. As the criti
value of the parameter is approached, ULC and SF me
and form the complex focus, which then transforms to U

In order to distinguish between the subcritical and sup
critical bifurcations, which occur at (a1d)50, we use the
approach elaborated by Bautin and Andronov@18,19#. It is
useful to transform the Taylor series forx and y to the ca-
nonical form

du

dt8
52bv1A20u

21A11uv1A02v
21A30u

31A21u
2v

1A12uv21A03v
31••• ~17!

and

dv

dt8
5bu1B20u

21B11uv1B02v
21B30u

31B21u
2v

1B12uv21B03v
31•••, ~18!

whereu5x, v52ax/b2by/b, andb5Aad2bc. For fur-
ther analysis it is convenient to change coordinatesu,v to
the polar coordinatesu5r cosF, v5r sinF. This leads to

dr

dF
5r

A1~q!r 1X2cosF1Y2sinF

A2~q!r 1Y2cosF2X2sinF
, ~19!

whereA1(q) and A2(q) are coefficients of the transforma
tion from (u,v) to (r ,f) andX25X2(r cosF,r sinF,q), Y2
5Y2(r cosF,r sinF,q) are polynomials of at least secon
degree inr cosF,r sinF. CoefficientsAi depend on the di-

e
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mensionless reaction heatq, which we use as the bifurcatio
parameter. Forr ,1 the right-hand side of Eq.~19! can be
expanded into

dr

dF
5rR1~F,q!1r 2R2~F,q!1r 3R3~F,q!1••• .

~20!

Assuming that

r 5r ~F,r 0 ,q! ~21!

is the solution to Eq.~20! for an initial valuer (F0)5r 0 we
can expandr with respect tor 0,

r 5z1~F,q!r 01z2~F,q!r 0
21z3~F,q!r 0

31••• . ~22!

Introducing Eq.~22! into Eq. ~20! we obtain the system o
recursive differential equations for the coefficientszi for i
51,2,3, . . . ,

dz1

dF
5z1R1~F,q!,

dz2

dF
5z2R1~F,q!1z1

2R2~F,q!. ~23!

The Poincare´ transformation defined by

c~r 0 ,q!5r ~2p,r 0 ,q!2r ~0,r 0 ,q! ~24!

determines the stability of the solution. Introducing soluti
~22! into this function gives

c5a1~q!r 01a2~q!r 0
21a3~q!r 0

31•••, ~25!

where

a15exp
2A1~q!

A2~q!
21, ~26!

ak5zk~2p,q! ~27!

for k52,3,4, . . . . Thecondition for the existence of the limi
cycle with the radiusr 0 has the form

c~r 0 ,q!5a1~q!1a2~q!r 01a3~q!r 0
21•••50. ~28!

For q5qcr two initial coefficients of this expansion are equ
to zero@a1(qcr)5a2(qcr)50#. The first focus numbera3 in
the notation used in Eqs.~17! and ~18! has the form

a35
p

4b
@3~A301B03!1~A121B21!#2

4p

4b2 @2~A20q20

2A02B02!2A11~A021A20!1B11~B021B20!#. ~29!

The stability of the solutions aroundq5qcr is determined
by sign of the first focus numbera3 and by a(q)1d(q),
which gives the sum of eigenvalues of Eqs.~15! and~16!. If
a3,0 in some interval ofq around qcr and a(q)1d(q)
changes its sign from negative to positive atq5qcr , then SF
03621
becomes UF and SLC around UF appears. This means th
q5qcr the supercritical Hopf bifurcation occurs. However,
a3.0 in some interval ofq aroundqcr and a(q)1d(q) at
q5qcr changes its sign from negative to positive, then aq
5qcr ULC shrinks its radius to zero and SF becomes U
This means that forq,qcr SF coexists with SLC. Therefore
the subcritical Hopf bifurcation has to occur at someq
5qb f,qcr , in which the pair of SLC and ULC is born.

IV. MASTER EQUATION

In the stochastic approach, a state of our system is
scribed by the distribution functionP(u,NA) for the tem-
peratureu and the populationNA of speciesA. ~ It is more
convenient to useNA instead ofa becauseNA is changed in
the reaction byDNA561.! The dynamics ofP(u,NA) is
governed by the master equation, which can be written in
following form:

]

]t8
P~u,NA ,t8!5E

Du,u
d~Du!P~u2Du,NA2DNA ,t8!

3w~u2Du,NA2DNA→u,NA!

2P~u,NA ,t8!E
Du.2u

d~Du!

3w~u,NA→u1Du,NA1DNA!. ~30!

The transition probabilityw is composed of three terms co
responding to the separate processes which contribute to
dynamics ofP. Two of them are connected to reactions~1!
and~2!, respectively, and the third one is related to the Ne
tonian exchange of energy without reaction:

w5w1~u,NA→u1Du,NA21!1w2~u,NA→u

1Du,NA11!1we~u,NA→u1Du,NA!. ~31!

The transition probabilitywe for exclusive energy exchang
is a continuous function ofDu, and it does not involve any
chemical changes. The explicit expression forwe has been
derived only recently@16,17#, under the assumption that th
velocity distribution of particles always remain Maxwellia
Using the dimensionless variables,we in our system can be
cast in the following form:

we~u,NA→u1Du,NA!

5 1
2 Nqc1@12pB~12a2h!#Auv~u!, ~32!

where
8-4
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v~u!5
u

~u11!3
S 21

~u11!S 3

2
ND uDuu

u
D

3
3

2
NH expS 2

3

2
N

uDuu
u D for Du,0

expS 2
3

2
NDu D for Du.0.

~33!

Expression~32! does not include these inelastic particl
surface collisions which are related not only to energy tra
fer but also to reaction~2!. The transition probabilityw2
corresponding to this latter process describes a change o
temperature byDu, combined with an increment of popula
tion of A by DNA51. With the use of Eq.~33!, w2 can be
written as

w2~u,NA→u1Du,NA11!5 1
2 Nqc1pB~12a2h!Auv~u!.

~34!

In contrast, the transition function related to reaction~1! in-
volves only the discrete change ofu, because release of th
reaction heatq always increases the temperature of the s

tem by the fixed valueDu15q/( 3
2 N). The decrement ofNA

associated with reaction~1! is DNA521. The transition
functionw1 has the well-known form@1# following from the
frequency of collisions related to reaction~1!:

w1~u,NA→u1Du1 ,NA21!

5NahAu exp~2«/u!d~Du2Du1!. ~35!

The problems related with analytical treatment of the d
crete master equation are widely known@1–3#; they are cer-
tainly more serious, if the master equation has the integ
differential form of Eq.~30!. Therefore, we study stochast
effects in our system by means of simulations of proces
described by this equation. The method of the Monte Ca
simulations of the master equation for discrete variable
well founded @20# and its appropriate modification for th
continuous form of Eq.~30! has been presented in the rece
paper@16#.

V. RESULTS

A. Supercritical Hopf bifurcation

In all our calculations we use the fixed values
the parameters«55.0 and h50.04. For studies of the
supercritical Hopf bifurcation we assume the followin
values of the remaining parametersc150.0018 andc2
50.0036. Equations~8! and ~9! for the deterministic
dynamics have only one stationary state w
the coordinates a`50.589 085 937 823 495 16 andu`

51.741 828 124 353 618 8. This state is SF belowq5qcr
521.968 and UF above it. At these values of the paramet
the first focus numbera3 given by Eq.~30! is negative at
qcr . Thus, the supercritical Hopf bifurcation occurs atqcr .
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Figure 2 shows the trajectories in the phase space
tained from simulations of the master equation for two s
tems containing 100 000 and 1 000 000 particles atq
521.0. These systems are very close to, but below the
percritical Hopf bifurcation. Similarly, Fig. 3 gives the re
sults obtained for the corresponding systems atq522.5. In
this case the systems are above the bifurcation. The fo
becomes unstable and SLC appears. For the smaller pa
number, the stochastic trajectories below and above the
furcation are very similar in Figs. 2 and 3, respectively. It

FIG. 2. Stochastic trajectories on the phase plane obtained f
simulations of the master equation~31! for the following values of
the parameters:«55.0, h50.04, c150.0018, c250.0036, andq
521.0. At these values of the parameters the system is just be
the supercritical Hopf bifurcation. Thin dashed line—N5100 000
particles, the continuous line—N51 000 000 particles. Thick con
tinuous lines—the nullclines of the system.

FIG. 3. Same as in Fig. 2 butq522.5. The system is just abov
the supercritical Hopf bifurcation.
8-5
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difficult to determine on the basis of the stochastic evolutio
if the system is below or above the supercritical Hopf bifu
cation. Close to this bifurcation, the dispersion of the s
chastic trajectories around the deterministic attractors
large, because the Liapunov exponents then become s
and the attraction towards the asymptotic solutions is we
Rough estimations based on the Fokker-Planck equa
show that the dispersion of stochastic trajectories around
deterministic solution is scaled by 1/uRe(l)u, wherel is the
eigenvalue of the linearized kinetic equations. Simul
neously, the size of SLC grows from zero and just above
supercritical Hopf bifurcation it is relatively small. Due t
these two factors, for the systems with small particle num
the magnitude of fluctuations is comparable to the size of
deterministic limit cycle. As the particle number in the sy
tem is increased, the fluctuations are diminished and the
chastic trajectories get closer to the deterministic attract
Accordingly, Figs. 2 and 3 show that forN51 000 000 the
stochastic solutions are different below and above the bi
cation: they are either contained in a small region around
or form a narrow ring around SLC. For values ofq further
from the bifurcation valueqcr , the attractors are stronge
and the dispersion of the stochastic results is weaker. Fig
4 shows the trajectories in the phase space forq525.0. In
this case the system is above the Hopf bifurcation, but i
more distant from the bifurcation than the system presen
in Fig. 3. For the same particle numbers as in Fig. 3,
stochastic solutions are stronger focused around the d
ministic SLC, and already forN5100 000 the stochastic tra
jectory forms a ring, corresponding to SLC as the asympt
solution.

B. Subcritical Hopf bifurcation

Above the subcritical Hopf bifurcation the system has t
deterministic attractors: SF and SLC which are separated
ULC. If the magnitude of fluctuations is sufficient, then
stochastic simulations one can observe transitions of the

FIG. 4. Same as in Fig. 2 butq525.0. The system is furthe
from the supercritical Hopf bifurcation as compared with Fig. 3
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tem between these two attractors which show very d
ferent dynamical behaviors. For studies of the subcriti
Hopf bifurcation, we select the following values o
the parameters:c150.0018 and c250.0085. At these
values ~and «55.0, h50.04) the stationary state
is located at a`50.470 823 867 584 482 95 andu`

53.309 998 403 073 369 1. The change of the stability fr
SF to UF occurs atqcr.266.5. At this value ofq the value
of a3 is positive, which means that for lower values of th
bifurcation parameter, SF coexists with SLC, and ULC se
rates the basins of their attraction. Figure 5 shows the
chastic trajectory atq5210.0 forN550 000 particles. ULC
and SLC are also shown. The value of the bifurcation para
eter is not too far from its critical value. Figure 6 shows t
time dependence of the concentrationa obtained from the
stochastic simulation of the system. This dependence is v
similar to intermittent oscillations observed in determinis
chaotic dynamical systems@21#. In order to characterize
them, we construct the Poincare´ section of the stochastic
trajectory on the phase plane at the straight line of fix
temperatureu5u` . The points of intersection, which th
trajectory passes going from the left to the right, are o
taken into account. The return map constructed from
Poincare´ section is depicted in Fig. 7. The big squares sh
the values ofa` at SF and SLC, whereas the big cross in
cates ULC. They are positioned on the diagonal and co
spond to fixed points for a map of the deterministic syste
The return map obtained from the stochastic trajectory sh
the specific effect of fluctuations. In Fig. 7, most of the ite
ated points in the return map are concentrated around
fixed points corresponding to SF or SLC. However, t
points far above~below! the diagonal are also seen. The

FIG. 5. Stochastic trajectory~the dashed line! on the phase plane
obtained from simulations of the system (N550 000) for the fol-
lowing values of the parameters:«55.0, h50.04, c150.0018,c2

50.0085, andq5210.0. At these values of the parameters the s
tem is above the subcritical Hopf bifurcation. The determinis
stable limit cycle and focus are shown by the thick closed curve
the big point, respectively, and the unstable limit cycle is shown
the thin closed curve.
8-6
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MASTER EQUATION SIMULATIONS OF A MODEL OF . . . PHYSICAL REVIEW E 68, 036218 ~2003!
points correspond to transitions from the basin of attract
of SF ~SLC! to the basin of attraction of SLC~SF!.

The transitions between the basins of attraction are
tremely sensitive to the magnitude of an effective barr
between the attractors. There are two main factors wh
determine this barrier. One of them is the ratio of determ
istic dynamics to strength of fluctuations. This factor d
pends on the total number of particlesN because the disper

FIG. 6. Time dependence of the concentrationa obtained from
simulations of the system with the parameters same as in Fig.

FIG. 7. Return map obtained from the Poincare´ section of the
stochastic trajectories depicted in Fig. 5. The sections were ca
lated for crossings with the line of fixed temperatureus

53.309 998 403 1 when the trajectory intersects the line going fr
lower to higher temperatures. The big squares show the valuesa
corresponding to the stable focus and the stable limit cycle, whe
the big cross—the unstable limit cycle. The small points far a
above~below! the diagonal correspond to transition from the ba
of attraction of the stable focus~the stable limit cycle! to the basin
of attraction of the stable limit cycle~the stable focus!.
03621
n

x-
r
h
-
-

sion of fluctuations is inversely proportional to the size of t
system. The probability of transitions may be characteriz
by the mean first passage time from one basin of attractio
the other one. In Fig. 8 we show the mean first passage
^t& from the basin of attraction of SF to the basin of attra
tion of SLC as a function of the number of particlesN. In
order to eliminate the possibility of ‘‘recrossing’’ of ULC
during the transition, we have assumed that a trajectory
reached the basin of attraction of SLC only if it had cross
the vertical lineu5u` above the pointa50.62, which is
located outside of ULC. The mean first passage time
been calculated from several hundred independent runs
smallN and about 100 runs for largeN. Fig. 8 shows that̂t&
strongly depends on particle numberN and for largeN this
dependence can be fitted by the exponential function.

The second factor determining the barrier is the dista
in the phase space between an attractor~from which the sys-
tem escapes! and an unstable state. When this distance
creases, the mean first passage time rapidly grows. The
tance separating SF and ULC in our system is a function
q. This distance is maximal atq5qb f , at which the subcriti-
cal Hopf bifurcation occurs, and SLC and ULC appear.
decreases with increasingq and approaches zero atqcr ,
when ULC collapses to SF. Figure 9 shows the influence oq
on the mean first passage time^t& ~calculated like in Fig. 8!.

VI. DISCUSSION

The model presented in this paper should be treated
simplification of real thermochemical systems. It could
useful as a tool in studies of the influence of fluctuations
the dynamics of complex chemical systems with exotherm
reactions. Appropriate choice of the parameters allows u
obtain various dynamical regimes including coexistence
more than two attractors. The values of the parameters u

.

u-

as
d

FIG. 8. The mean first passage time^t& from the basin of at-
traction of the stable focus to the basin of attraction of the sta
limit cycle as a function of the total number of particlesN. The
straight line shows the linear fit to the results of the simulations
N>50 000.
8-7
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A. L. KAWCZYŃ SKI AND B. NOWAKOWSKI PHYSICAL REVIEW E 68, 036218 ~2003!
in the present paper are realistic@22,23#. The dimensionless
activation energy« must be greater than 4 in order to assu
theN-shaped nullcline for temperature. Such values are o
met in real systems. The value«55 assumed in this paper i
convenient, if one plans an extension of this work by app
ing microscopic simulations of the system. The values
dimensionless reaction heat are also typical for weak e
thermic (q'20) and strong exothermic (q'200) reactions.
The assumed concentration of the catalyst is an order lo
than the concentrations of the reagents.

The strongest influence of fluctuations can be expected
systems which are close to a bifurcation. We study the s
cific effects appearing in these conditions using the ma
equation approach, which is the most direct way to study
influence of internal fluctuations. The other way is to use
Langevin approach, in which deterministic equations
supplemented by noise terms. The Langevin method is c
venient to study the influence of external noise. For the
scription of the effect of internal fluctuations it may be us
only if the magnitude of random forces is related to the le
of internal fluctuations.

Our simulations show that close to the supercritical Ho
bifurcation it is very difficult ~if possible at all! to decide
whether the system is below or above the bifurcation.
illustrate this uncertainty for the system containing relativ
small number of particles, but such a situation can appea
macroscopic systems as well, if they are sufficiently close
the Hopf bifurcation@24#.

Close to the subcritical Hopf bifurcation, when two attra
tors ~the stable focus and the stable limit cycle! coexist, fluc-
tuations are able to switch the trajectory of the system fr
one basin of attraction to the other one. The typical beha
representing such transitions is shown in Fig. 6. The in
lacement of small and large amplitude oscillations is the c
sequence of fluctuations and it should be distinguished f

FIG. 9. The mean first passage time^t& from the basin of at-
traction of the stable focus to the basin of attraction of the sta
limit cycle as a function of the bifurcation parameterq.
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the intermittence observed in deterministic chaotic dyna
cal systems.

Rigorous analytical results for the mean first passage t
are not available for systems described by many variable
has been proven that^t& can be obtained from the stationa
solution of the master equation@25#, but this result does no
allow us to obtain an analytical expression for^t& because of
the integrodifferential form of Eq.~30!. However, some the-
oretical predictions for multivariable systems can be ba
on the rigorous results for one-variable systems. The ana
cal expression for the mean first passage time for o
variable systems@2,26,27# can be derived from the Fokker
Planck equation, obtained from the expansion of the ma
equation for large systems@1,3#. This result shows the fea
ture@2,26# that the mean first passage time depends expon
tially on the magnitude of an effective activation barrier b
tween the attractors. Similarly, as in physical systems w
potential, this activation barrier may be calculated by in
gration of the ‘‘chemical force’’ along a path from an attra
tor to an unstable state. In chemical systems, the role of fo
plays the ratio of the reaction rate to the noise streng
which is one factor determining the barrier height. The s
ond factor is the length of the integration interval in th
phase space from the attractor~from which a system escapes!
to the unstable state. Although such potential cannot be
troduced rigorously in dissipative, multivariable systems,
asymptotic results for the weak-noise limit indicate that ba
properties of transitions in one-variable systems can also
found in dissipative, multidimensional bistable systems
which two attractors are separated by the saddle point@28–
32#. In such transitions stochastic trajectories pass thro
the region around the saddle point, which is related to
minimum of the activation barrier. This property cannot
directly extended to our system, in which no saddle po
exists, and the trajectories must cross the unstable l
cycle.

However, the description of the stochastic transitio
through the unstable limit cycle can be simplified in the fo
lowing way. If the system circulates around the stable foc
and inside the unstable limit cycle, its dynamics can
treated approximately as a deterministic drift along the cy
and a relatively slow diffusive motion in the direction pe
pendicular to the cycle. Following this approximation, o
could then describe the transitions of trajectories across
unstable limit cycle as the one-dimensional stochastic
namics through a potential barrier@33#. On the basis of the
theoretical results for one-variable systems@28–33#, one can
expect that the transitions occur in the vicinity of the point
closest approach between the stable focus and the uns
limit cycle. Moreover, in this region the density of circula
ing trajectories is the highest, which shows that the vec
field normal to the unstable limit cycle is the weakest a
this property enhanced the weakening of the apparent po
tial barrier in this direction. Figure 5 indeed shows that t
transitions occur effectively only if the stochastic trajecto
remains in the region of the closest approach between
stable focus and the unstable limit cycles on the phase p
(u,a). The minimal distance between these states is a fu

le
8-8
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tion of the bifurcation parameterq, and Fig. 9 confirms tha
^t& depends strongly onq.

Due to circulation of the stochastic trajectory the height
the one-dimensional barrier changes periodically in tim
The transitions are effective only in the region close to
minimal distance, where the barrier is smallest. Therefo
one can expect that the transition probability changes p
odically in time @33#.

The exponential factor including the effective barrier b
comes many orders of magnitude smaller if the system
close to the bifurcations, which means that the unstable l
cycle and the attractor~the stable focus or the stable lim
nd

s.

03621
f
.

e
e,
ri-

-
is
it

cycle! remain still relatively close. In these conditions th
transitions from one basin of attraction to another one
appear not only in the small systems discussed above,
even in macroscopic systems.

In the present paper we limit ourselves to the case of
intersection point of the nullclines. The nullcline foru can be
approximated by a polynomial of the third degree. For pla
vector fields described by polynomials of the third degr
for the codimension 12 problem, the number of possi
limit cycles~attracting or repelling!, which can appear after a
bifurcation is limited from below and according to the r
cently proven theorem@34# is not less than 11.
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@8# A. L. Kawczyński and B. Nowakowski, Pol. J. Chem.70, 1468

~1996!.
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